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ABSTRACT
We present a new method to identify large-scale filaments and apply it to a cosmological
simulation. Using positions of haloes above a given mass as node tracers, we look for filaments
between them using the positions and masses of all the remaining dark matter (DM) haloes.
In order to detect a filament, the first step consists in the construction of a backbone linking
two nodes, which is given by a skeleton-like path connecting the highest local DM density
traced by non-node haloes. The filament quality is defined by a density and gap parameters
characterizing its skeleton, and filament members are selected by their binding energy in the
plane perpendicular to the filament. This membership condition is associated to characteristic
orbital times; however if one assumes a fixed orbital time-scale for all the filaments, the
resulting filament properties show only marginal changes, indicating that the use of dynamical
information is not critical for the method. We test the method in the simulation using massive
haloes (M > 1014 h−1 M�) as filament nodes. The main properties of the resulting high-
quality filaments (which corresponds to �33 per cent of the detected filaments) are (i) their
lengths cover a wide range of values of up to 150 h−1 Mpc, but are mostly concentrated below
50 h−1 Mpc; (ii) their distribution of thickness peaks at d = 3.0 h−1 Mpc and increases slightly
with the filament length; (iii) their nodes are connected on average to 1.87 ± 0.18 filaments
for �1014.1 M� nodes; this number increases with the node mass to �2.49 ± 0.28 filaments
for �1014.9 M� nodes; (iv) on average, the central density along the filaments starts at almost
a hundred times the average density in the regions surrounding the nodes and then drops to
about a few times the mean density at larger distances, where it remains roughly constant
over 20–80 per cent of the filament length (this result may depend on the filament length); (v)
there is a strong relation between length, quality and how straight a filament is, where shorter
filaments are those characterized by higher qualities and more straight-line-like geometries.
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1 IN T RO D U C T I O N

The large-scale distribution of galaxies and dark matter (DM) shows
a web-like structure composed by clusters, walls, filaments and void
regions, and is usually referred to as the cosmic web. These struc-
tures can be easily detected by eye in numerical DM simulations or
in the observed distribution of galaxies in large surveys such as the
Sloan Digital Sky Survey (SDSS; York et al. 2000).

For clusters and voids, there are several well-established auto-
mated identification methods which have been broadly used, such
as the friend-of-friends (FOF) algorithm for halo/cluster detection
(Davis et al. 1985) and the Padilla, Ceccarelli & Lambas (2005)
algorithm for reliable detection of voids (see Colberg et al. 2008
for a complete review on different void detection methods). In the
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case of filaments and walls this task is markedly difficult since,
in general, there is still no clear consensus on how to characterize
them; filaments and walls show complex 3D shapes.

There are different approaches to the study of filaments. From
the theoretical point of view it was found that the gravitational
collapse of matter on large scales leads to the formation of sheets
and filaments (Zel’dovich 1970). Bond, Kofman & Pogosyan (1996)
studied tidal fields in the large-scale structure (LSS) and showed
how these produce filamentary structures.

There are several sets of filaments which have been identified
and characterized by eye in both simulations and observations.
Colberg, Krughoff & Connolly (2005) identified by eye 228 fil-
aments between massive neighbouring haloes in a DM simulation,
and described several interesting statistical properties using this
sample. In observations, Pimbblet, Drinkwater & Hawkrigg (2004)
and Porter et al. (2008) identified filaments in large surveys by
eye, and DM filaments were also be detected between clusters of
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galaxies using weak lensing techniques (Mead, King & McCarthy
2010). In X-ray observations, it has also been possible to detect hot
gas filaments connecting clusters (Scharf et al. 2000).

The study of statistics and the topology of the galaxy distribu-
tion with the aim to search for filaments starts very early, with
studies by Zel’dovich, Einasto & Shandarin (1982), Shandarin &
Zel’dovich (1983) and Einasto et al. (1984). Options to automate the
search of filaments include the use of statistics on the morphology
of structures, such as Minkowski functionals, minimal spanning
trees (MST), percolation methods and shapefinders (see review by
Martı́nez & Saar 2002). The minimum spanning tree method was in-
troduced in cosmology by Barrow, Sonoda & Bhavsar (1985). This
produces a unique graph which connects points of a process with-
out closed loops, but describes mainly the local nearest-neighbour
distribution and is unable to provide a full characterization of the
LSS. Shapefinders (Sahni, Sathyaprakash & Shandarin 1998) have
also been used to identify filaments.

In three dimensions, the morphology of a compact manifold can
be characterized by four Minkowski functionals: volume, surface
area, integrated mean curvature and integrated Gaussian curvature.
It is possible to define a number of quantities related to those func-
tionals; if a set of positions of galaxies or haloes is characterized by
particular values of ratios between the Minkowski functionals, it is
very likely that it will show a filamentary shape (Bharadwaj et al.
2000), but this does not guarantee a true detection of a filament or
that all the selected members actually belong to the filament.

Another algorithm for the detection of filaments was proposed
by Pimbblet (2005) based on the assumption that the orientations
of constituent galaxies along such filaments are non-isotropic. This
method works well on straight filaments with separations smaller
than 15 Mpc h−1, as has been shown in their application to the
Two Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al.
2001).

The Skeleton method (Eriksen et al. 2004; Novikov, Colombi
& Doré 2006) has proven useful for the detection of possible fila-
mentary structures in continuous 2D density fields. The skeleton is
determined by segments parallel to the gradient of the field connect-
ing saddle points to local maxima. The method involves interpola-
tion and smoothing of the point distribution, introducing the kernel
bandwidth as an extra parameter in the procedure of estimating
the density field. Extending this work to three dimensions, Sousbie
et al. (2008) found good agreement between detected skeletons and
eye detections in a numerical DM simulation. By using the Hessian
matrix eigenvalues they were able to detect filamentary structures
(See also Aragón-Calvo et al. 2007a,b). Bond, Strauss & Cen (2009)
also use the Hessian matrix of the galaxy density field smoothed on
different scales to characterize the morphology of the LSS in mock
catalogues and in the SDSS (Stoughton et al. 2002); they use their
detected structures to determine the typical scales where filaments,
clumps and walls are dominant.

The Candy model used by Stoica et al. (2005) is a 2D marked
point process where segments serve as marks. This method has
been adapted to three dimensions and also improved to a more
general Bisous Model (Stoica, Martinez & Saar 2008), producing
detections in very good agreement with the result of eye detection
in tracing filamentary structures using only galaxy positions (as in
the method we will present). However, the detection and thickness
of the resulting filaments is only given by a coverage threshold (per
cent of total points, to be included in filaments).

The spin and orientation of haloes in filaments has been studied
by Aragón-Calvo et al. (2007b) and Zhang et al. (2009). They use
a multiscale morphology filter (MMF) and compute the Hessian

matrix eigenvalues in a density field smoothed on different scales,
to divide the full volume of their samples into cluster, filament and
wall like structures. However, this method, as well as other Hessian
matrix based methods, is affected by a lack of an ability to determine
the thickness of filaments, and are difficult to apply to observational
data, where one needs to define whether a galaxy is a member of a
cluster, filament or void.

In this paper, we propose a new automated method to detect fila-
ments which builds upon ideas of several of the methods mentioned
previously. A novel feature of the method is that it is designed to
search for filaments using nodes (corresponding to haloes or galaxy
clusters as in Colberg et al. 2005) selected by applying lower limits
on their mass (or proxy for mass). This new method aims to be
applicable to discrete halo or galaxy positions even when these are
so sparsely distributed that it is not possible to define a smooth
density field, or that the Hessian matrix cannot be computed with
an adequately high accuracy. This makes it particularly suitable for
observational data such as the 2dFGRS or SDSS. In addition, we
replace the smoothing scales and filament coverage thresholds by
parameters with improved physical meaning. In this new approach
a filament quality depends on parameters related to the relative den-
sity and gaps of the filament skeleton, and its members are identified
as the haloes or galaxies with binding energies with respect to the
filament in the plane perpendicular to its skeleton. We will use the
numerical simulations to calibrate the binding condition using ob-
jects with a collapse time and radius that can be computed even
when dynamical information is not available, as is usually the case
with observational data. In the latter, measurements or proxies for
galaxy masses will still be required in order to define the filament
membership condition.

This paper is organized as follows. Section 2 presents the nu-
merical simulation on which we perform our automated search for
filaments. The method is presented in Section 3, which also includes
details on the measurement of the local density field, and describes
the input parameters of the algorithm. Section 4 presents the results
and Section 5 concludes this paper with our conclusions.

2 TH E N U M E R I C A L S I M U L AT I O N

We use a cosmological DM simulation with parameters correspond-
ing to the concordance lambda cold dark matter (�CDM model,
�b = 0.045, �DM = 0.235, �DE = 0.72, h = 0.72, σ8 = 0.847
and n = 1), 5003 particles and a periodic cube side of 250 Mpc h−1.
At z = 0 we find 176 041 haloes and subhaloes in the mass range
1.4 × 1011 < M < 1.5 × 1015 h−1 M�, identified using the AHF

code (Knollmann & Knebe 2009). For the detection of filaments,
we select as nodes a total of 427 haloes with M > 1014 h−1 M�.
The node pairs that will be the candidates for filament search are
constructed using neighbour nodes, which are easily obtained using
Voronoi tessellations (VT hereafter, to be explained in more detail
in the next section). We obtain a total of 3385 node pairs with sep-
arations <65 h−1 Mpc, using periodic conditions (310 node pairs
straddle the simulation borders); Fig. 1 shows all the node pairs in a
slice of the simulation. In the next section we will apply the filament
detection method to each of these node pairs.

3 ME T H O D

Our filament detection method is described in this section. We apply
the method to DM halo positions in the simulation as a first step
towards the detection of galaxy filaments from observational data.
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Figure 1. Density field in the numerical simulation corresponding to a slice 100 h−1 Mpc thick. The density is obtained using the halo positions. The red
circles enclose the virial radii of the node haloes; white lines connect all the node pairs separated by less than 65 h−1 Mpc.

A future extension will also use halo substructure as well as galaxies
from a semi-analytic model so as to mimic real galaxies as closely
as possible (as galaxies are thought to form in the potential well
of DM haloes and subhaloes). When applying our method to semi-
analytic galaxies we will be able to detect the effects of using proxies
for the host DM halo masses obtained from a galaxy catalogue
(e.g. dynamical masses, luminosities in different bands) instead of
the measured DM halo masses. Finally, our method can also be
extended to use redshift-space information to assess the effect of
large-scale bulk motions and the small-scale finger-of-god effect on
the resulting filaments.

We will not attempt to find all the filamentary structures in the
simulation, only those filament segments generated between haloes
above a given mass threshold (node pairs). Therefore, smaller fil-
aments associated to less massive nodes will be missed if they are
not in the path (or part) of the selected nodes.

3.1 Density field

In this paper we distinguish between two different definitions of
density: (i) the standard DM density traced by the particles in the
simulation which we call DM density and (ii) the density given by

the halo positions and their virial masses which we call the halo
density. It is clear that the halo density contains little information
about the mass and structure that lie beyond the virial radii of the
haloes, but as we will show it is still an appropriate proxy of the
DM density in the simulation. It is clear that halo positions and
their masses (or in the observational case, galaxy positions and
luminosities) allow a clear by-eye detection of filamentary features
at large scales (Colberg et al. 2005).

In general, the density and density gradient field of a distribution
of points can be obtained using VT, in a similar approach to that
adopted by Aragón-Calvo et al. (2007b) where they compute the
density field using Delaunay tessellation field estimator (Shaap &
van de Weygaert 2000). In this paper we make use of the neighbour
information for all the haloes to trace the halo density field as well
as to compute a fast proxy for the halo density gradient vector
field. VT also allows us to obtain the immediate neighbours of
each halo (or galaxy if applied to observational data). The VT
(Voronoi 1908) technique is one of the best adaptive methods to
recover a precise density field from a discrete distribution of points,
with clear advantage over the method used in smoothed particle
hydrodynamics or other interpolation-based techniques (Pelupessy,
Schaap & van de Weygaert 2003). We compute the VT for the halo
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Figure 2. Left-hand panel: Voronoi cell volume versus mean neighbour separation, DIP, for all the haloes in the simulation. Right-hand panel: Voronoi halo
density versus DIP for all the haloes. Dashed lines represent the relation V = D3

IP (left-hand panel); in the right-hand panel it corresponds to V = median(MVIR)/ρ.

distribution defining a cellular-like structure, where each halo is
associated to a region (or Voronoi cell) in which any point inside
this region is nearest to that halo than to any other.

The volume of the Voronoi cell and the enclosed mass define
a very precise and adaptive measure of the density. In the case of
point masses (such as when using the DM particle distribution),
one can measure the exact enclosed mass in each Voronoi cell,
and therefore compute a very accurate DM density field. Instead,
in this paper we use the halo positions along with their measured
virial masses. The VT computation is done in the same way as
for particles, but the halo virial mass does not account for all the
enclosed mass in the Voronoi cell, it only includes the mass out
to the virial radius. For instance, in low-density environments the
halo-to-neighbour distance is much larger than the virial radius, and
therefore the mass enclosed in the Voronoi cell given by the virial
mass of its central halo is underestimated. The opposite occurs in
dense environments where the Voronoi cell volume of a halo can be
even smaller than their virial sphere due to close neighbours; in this
case there is an overestimation of the enclosed mass in the Voronoi
cell. As this method does not require absolute density values but
only the relative highest density path between nodes (mainly given
by the collapsed mass) the use of the halo density would increase the
contrast of filaments improving the ability of the method to follow
their high relative density path to some degree.

We argue that in the high-density end, the halo density overes-
timation is not important for our purposes since (i) we will not
consider subhaloes or haloes inside the virial radius of nodes (the
most massive haloes) and (ii) the inter halo distance becomes com-
parable to the virial radius at halo densities much greater than the
average density along the filaments, and therefore only a few haloes
considered in our analysis will suffer this overestimation. As a re-
sult, most of the haloes that will present an overestimated density
will be nodes, and the remaining affected fraction will be located
around nodes and in the central sections of the filaments, where
their filament membership will be ensured, independently of the
overestimation of their density.

In low-density regions the Voronoi cells of haloes are always
much larger than their virial spheres which produces an underesti-

mation of the density; later in this section we will work on dimin-
ishing this problem by using an approximation assuming Navarro,
Frenk & White (1997, NFW) profiles, to define the characteristic
DM density between two haloes.

Before moving on to the calculation of the characteristic density
between haloes, we will analyse in more detail the differences be-
tween the halo and DM densities. For a smooth density field, such as
is the case of fields traced by DM particles, the Hessian matrix can
be computed with high accuracy to find the filament components
easily. But the process is more complicated in the case of having
only the positions of haloes and their virial masses. This is due to
the sparse coverage of haloes, their variable masses, and the loss
of information regarding the mass located beyond the virial radii of
haloes. In order to understand the importance of these issues we will
look at the relation between average halo to neighbour separation
(DIP) and its Voronoi cell volume.

In order to recover the real DM density field as best as possi-
ble using only halo positions, one needs to take into account the
following.

(i) In high-density environments the Voronoi cell volume is re-
lated to the local mean interparticle distance, i.e. the mean neighbour
distance DIP. The left-hand panel of Fig. 2 shows a very tight re-
lation between these two quantities for the full halo population. In
the figure, the dashed line shows the V ∝ D3

IP relation, which is
very useful for halo detection methods such as FOF (Davis et al.
1985), where the particle separation is used to connect particles
above a given density threshold. In the case of having only halo
positions, we find that this relation breaks down at lower densities
(as can be seen in the left-hand panel of Fig. 2). The origin of this
departure from the distance versus volume relation is the complex
shapes1 developed by Voronoi cells at such low densities as result
of greater standard deviation in the computation of DIP due to a low
neighbour count and interhalo distances falling within a wide range
of possible values. Another possibility is that shot noise is affecting

1We refer as complex cell shapes to non-spherical or non-polyhedric like
shapes, produced when having few neighbours at non-uniform distances.
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our estimates, but this should not be the main source in our case
since haloes mark the highest peaks in the density field, and we
use a relatively large minimum number of particles per halo. This
implies that the local clumpiness of a set of haloes in low-density
environments is only poorly related to its density; this may pose a
challenge to the search for the backbone of filaments. This effect is
negligible when obtaining the density field using DM particles since
these typically produce a smoother spatial coverage and therefore a
much smaller fraction of these will be surrounded by Voronoi cells
with complex shapes.

(ii) The spread in the virial masses of the haloes, introduces a
scatter in the relation between mean neighbour separation and the
halo density (right-hand panel of Fig. 2) with respect to the resulting
relation from using only cell volumes. Therefore, the halo density
can only be used as a proxy for the matter density, and will serve
to choose which halo pair will have the highest local DM density;
by choosing the neighbour with the greatest halo density, it will
probably be the nearest one and very likely the correct choice.
This will sometimes not be true, for example when two or more
neighbours have similar halo densities. Consider for example two
neighbour cells with almost equal densities, but one having F times
more mass and F times more volume than the other (F > 1); if
we make a simple estimate of the DM density for the region lying
between the halo and these two neighbours using NFW profiles for
each halo, we will find that the path connecting to the smallest and
closest neighbour will have the highest DM density. Later in this
section we will apply this correction to our VT density estimates.

We now estimate the local DM density between a halo and its
neighbours, which we call the characteristic DM density ρ∗. As we
have shown, the halo density estimate is relative and it is only used
to find the neighbour with the highest local DM density from all the
possible halo–neighbour pairs. This density is an approximation that
depends on the halo masses and interhalo distances, and therefore it
is probably safer not to compare it to the real DM density field given
by the DM particles. Due to these considerations, in order to find the
path of highest local DM density connecting two nodes, we need to
add conditions on when and how to use of the halo density field. To
estimate the characteristic DM density ρ∗ between the ith halo and
one of its neighbours, halo j, we will have two cases depending on
the relation between their separation and their virial radii,

(i) Dij ≤ RVIR(i) + RVIR(j ) : ρ∗ = k1 ρ(j ),

where Dij is the distance between haloes, ρ is the halo density, and
k1 is a constant which includes the halo density of halo i common
to all its neighbours. The fraction of halo pairs which satisfy this
condition is very low and correspond to nodes and their immediate
neighbours (haloes which are linked gravitationally); here the halo
density is a good proxy for the DM density, and even a possible
overestimation of the halo density due to cell volumes smaller than
virial spheres is positive for our purpose, since gravitationally linked
haloes should have the first priority at the moment of choosing the
halo–neighbour path to form the filament skeleton. In this case,
the segment connecting haloes i and j will have the maximum
characteristic DM density among the other immediate neighbours.

(ii) Dij > RVIR(i) + RVIR(j ) : ρ∗ = k2 ρ(j ) η−1f (Mi, Mj ).

Most halo pairs fall in this second case. Here we use NFW profiles
to estimate a proxy of the characteristic DM density between two
haloes. This proxy consists on the minimum DM density present
in the path between two haloes, obtained by extending NFW pro-
files beyond the halo virial radii (this is a good approximation since

the average of the interhalo separation in the filament backbones
is 4.80 ± 0.03 times the sum of the virial radii of the two neigh-
bour haloes, see Section 4.1). In the equation, Mi and Mj are the
halo masses, the η factor represents the breakdown of the relation
between interhalo distance and Voronoi cell volume,

η = D3
IP

Vcell
,

f (Mi, Mj ) �
(

Mi

M∗

)0.13 (
1 + �

�

)3

, � =
(

Mi

Mj

)0.376

,

and k1 and k2 are constants intended to provide the continuity be-
tween both densities at η = 1, and � = 1; M∗ = 1012.5 h−1 M� is
the constant in the Bullock et al. (2001) concentration versus mass
relation. The η parameter appears naturally in this approximation
where its value is usually greater than 1; therefore, two haloes with
high masses and high Voronoi halo densities will have lower ρ∗ if
their separation is large, as can be the case in regions with a low
number density of discrete points.

The DM density between two haloes will be used as segment
weights in the search for the path connecting two nodes, in a sim-
ilar way to that used in the search for the shortest path in graph
theory; therefore, the filament backbone or skeleton is the result of
solving for this graph, which has several different approaches in the
literature (Biggs, Lloyd & Wilson 1986).

3.2 Input parameters

We detect filaments using nodes above a fixed minimum mass.
This choice is necessary since the filamentary structure is found at
different scales; there are even filaments inside filaments or inside
clusters (Bond et al. 1996).

In addition to the minimum node mass, other parameters will be
necessary since otherwise it is always possible to find the highest
density path connecting any two nodes. However, our aim is to in-
volve only the lowest number of parameters possible, which include
the following.

(i) A minimum density threshold for the galaxies or haloes which
form the backbone of a filament. This density refers to a minimum
characteristic DM density (defined in the previous subsection) along
the consecutive halo pairs which form the filament backbone. There
is no fixed physically motivated minimum value for this quantity,
but we are interested in the filaments which are at least noticeably
above the local background density, i.e. filament backbones above
a few times the mean density. We will use this minimum density
as a quality parameter for the detected filaments, since the higher
this density for a filament is, the stronger the density gradients and
filament-like potential will be, with more haloes bounded to them.

(ii) A maximum gap threshold for the galaxies or haloes which
define the backbone of the filament. A measure of the gaps in
a filament is given by max(DSK/〈DSK〉), the maximum distance
divided by the average distance between all pairs of consecutive
skeleton members of an individual filament. Large values for this
parameter imply large gaps between two filament sections. Gaps
are an important problem, particularly for low-density filaments.
Again, this parameter will not define a limit on what is identified as
a filament, but will be used as another quality parameter since the
smaller this value is, the more continuous and uniform the filament
will be, with less noticeable gaps in the backbone.

(iii) After the definition of the backbone or skeleton of the fila-
ment has been completed, we select the members of the filament.
This is done by analysing which neighbours are gravitationally
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linked to the filament and will collapse into the skeleton or remain
within the filament for at least a given amount of time. We define
a time-scale tF, which is the maximum time allowed for the orbit
of a halo in the plane perpendicular to the filament, assuming it is
gravitationally bound (in this plane). Since the peculiar velocities of
the haloes in the numerical simulation are known, we can calculate
which haloes are bound to the filament; we use this information
to characterize an average time-scale and the associated radius out
to which bound haloes can be found. This will help to implement
this filament identification in the case of observational data with no
available information on peculiar velocities.

It is complicated to define physically motivated density and gap
thresholds for each filament analogous to the virialization density
for the spherical collapse model. The reasons behind this are the
complicated filament shapes and their continuous feeding of their
node haloes or clusters. Therefore, we will use these parameters to
assess the quality of a filament; filaments will be better defined if
their minimum backbone densities are high and their largest gaps
are small.

The reasons behind the choice of these two parameters to define
the quality of filaments are the following. A filament is a region
in the universe where the gravitational collapse of matter occurs
mainly towards a line (continuous but not necessarily straight);
therefore we have a cylindrical-like density profile with its associ-
ated cylindrical-like potential. Following this principle, and at the
scales we are interested in this paper (filaments between high mass
haloes), we will assume a filament is of higher quality than another
one if it is more likely to satisfy the previous conditions. A stronger
cylindrical-like density profile (indicated by the DM density be-
tween consecutive halo pairs in the skeleton) above the background
will produce a stronger collapse of matter towards the skeleton,
and smaller gaps between filament backbone members will better
guarantee the continuity of the filament. The complex geometries
and different scales characterizing filaments, along with the facts
that there is no known density profile a filament should follow and
that they are unstable structures, make it difficult to set the val-
ues for these two parameters that will ensure a high-quality sample
of filaments. Instead we simply assume that a higher characteristic
density and smaller gap parameters imply a higher quality filament.

3.3 Description of the algorithm

Fig. 3 shows a cartoon depiction of some of the steps followed by
the algorithm to identify filaments for a particular node pair; in
the figure, circles represent halo positions and their virial radii. We
identify filaments in the following way.

(i) We select a node tracer pair (indicated by blue circles in the
figure).

(ii) We follow the segments of highest local DM density given
by the characteristic density ρ∗. This defines the filament backbone
or skeleton. For this we define a set of threshold densities ρth(i)
with i = 1, . . . , N , in the range set by the minimum and maximum
densities in the full density field.

(iii) For each node we generate a list of neighbour haloes just
outside the virial radius in the half hemisphere that points to the other
node. These neighbours will be labelled as start haloes associated
to the node from which we will start the filament search. End haloes
will be the neighbours associated with the other node in the node
pair in the half hemisphere pointing back to the start node. In panel
(a) of Fig. 3, the blue dotted lines indicate the half hemispheres of

the nodes that point to the other node; red circles mark the haloes
at the start and end nodes.

(iv) The first attempt at identifying a filament is done starting at
the highest density threshold ρth(i = 1).

(v) The process is iterative selecting the start halo with the highest
local DM density with respect to the start node, characterized by a
local density greater than ρth(i). A halo that satisfies this condition
becomes part of a possible skeleton, and we search for neighbours
of this new skeleton member using the same conditions. If there
are no new neighbours satisfying this, we go back to the previous
halo from where we will choose a different neighbour to restart
the procedure. Panel (b) depicts this step. The colours of the lines
(solid and dashed) connecting pairs of haloes correspond to the local
characteristic DM density (densities are shown in the colour-scale
bar at the bottom of the panels). As can be seen, we start with the
maximum characteristic density threshold ρth(i = 1) denoted by a
vertical black line in the colour bar. We choose the start halo (the
one connecting with the start node located near the bottom of the
panel) which has four neighbour candidates (connected by dashed
lines to the start halo) for skeleton members, but two neighbours are
neglected since they are also start haloes. This leaves two remaining
candidates, but none of them are characterized by densities higher
than the threshold, and we are not able to find a filament at this
density threshold.

(vi) We repeat the last step with a different start halo until any of
the end haloes of the other node are reached, or until there are no
more haloes satisfying these rules.

(vii) If no connection to the other node is found, we move down
to the next lower density threshold step ρth(i + 1), and go back
to step versus panel (c) shows the skeleton after lowering several
times the density threshold down to the point where the skeleton
contains four members (connected by the solid lines). However, the
fourth skeleton member has no neighbour candidates (connected by
dashed lines to the fourth member) with characteristic DM density
greater than the current threshold.

(viii) We will always find a set of connected points (a filament
backbone) between two nodes for a sufficiently low value of ρ th den-
sity. Higher values of this density imply stronger filament contrasts.
Panel (d), shows the result when a first skeleton was completed
between the two nodes, for a sufficiently low-density threshold.

(ix) We recentre the local centre of mass of the filament skeleton
using its immediate Voronoi neighbours.

Having a well-defined backbone, we start adding skeleton neigh-
bours to the filament and computing filament characteristics, in the
following way.

(i) For any given halo k we find the nearest skeleton member j
(shown in panel e).

(ii) We measure the mass contained in a cylinder around the
skeleton at the position of the skeleton halo j. The cylinder height is
H = (Dj,j+1 + Dj,j−1)/2 and its radius R = Dk,j. Using this mass and
the difference between the average velocities of the haloes within
that cylinder and that of halo k, projected in the plane perpendicular
to the cylinder, we compute the total halo energy in the plane, EP.
In panel (e) of Fig. 3, the cylinder is depicted by black dashed
lines. The cylinder axis(middle black dashed line) is tangent to the
filament at halo j as inferred using the two immediate neighbour
skeleton members.

(iii) We compute the orbit time t around the cylinder for halo k
assuming that the distance Dkj is the semimajor axis of the orbit.
This time-scale only uses information on the potential energy and
does not require peculiar velocity data.
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Figure 3. Filament detection method steps. Details of each step in text.
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1456 R. E. González and N. D. Padilla

(iv) We select all haloes with EP < 0 and calculate their median
orbit time t1; we define r1 as the radius containing 80 per cent of
these haloes. This sample can only be obtained from haloes with
peculiar velocity information.

(v) We select all haloes with EP < 0 and t ≤ tF, with tF a
fixed input parameter, and we define r0 as the radius where 80 per
cent of these haloes are contained. This defines a sample using EP

measurements and it therefore needs peculiar velocity information
to be constructed.

(vi) We select all haloes with t ≤ tF, and define r2 as the radius
where 80 per cent of these haloes are contained. This selection can
be done with position and mass information alone and does not
require dynamical information.

(vii) Finally, we also select all haloes with t ≤ t1, and we de-
fine r3 as the radius containing 80 per cent of these haloes. This
selection also requires velocity information and is used to assess
the importance of the binding energy condition against that of the
orbital time-scales.

All haloes closer to the skeleton than r1 will be selected as fil-
ament members in the simulation. Panel (f) of Fig. 3 shows the

resulting filament, where blue circles correspond to haloes belong-
ing to the new filament; the remaining nearby haloes are too far away
from the filament and do not satisfy the membership conditions.

4 R ESULTS

Fig. 4 shows four detected filaments in the simulation, where the
halo density projected on to the xy plane is shown in a colour scale,
the skeleton is shown as red lines, and the recentred skeleton as blue
dashed lines. The nodes are indicated by circles with radii equal to
the halo virial radius. White points denote all haloes lying closer
than r0 from the filament skeleton, and blue boxes denote haloes
closer than r1. The red triangles are for haloes with EP < 0. All
the filaments contain segments with only either a few or no bound
haloes, at least according to our definition.

We bear in mind the possibility of undetected bound haloes since
in our energy calculation we do not take into account nearby struc-
tures other than the filament. In order to produce a more precise
energy calculation one would need to use velocities from other
sections of the skeleton instead of only from the nearest skeleton
section; filaments show a very complex velocity structure where

Figure 4. Four examples of detected filaments. The red solid lines show filament skeletons, the blue dashed lines show the re-centred skeleton. The white
asterisks correspond to haloes at distances from the filament r < r0, whereas blue squares show haloes at distances r < r1. The red triangles show haloes with
EP < 0.
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nodes sometimes move towards each other (they may merge in the
future) or away from each other, making filaments suffer stretching,
elongations, torsions and even rotations. However, the incomplete-
ness in the sample of bound haloes should not affect our estimate
of the mean effective radius of the filament (r1), which we use to
define filament membership.

In the upper-left and bottom-left panels of Fig. 4 the filaments
show excellent density contrasts, but also show a gap (near the top
node in the upper-left panel, and near the left node in the bottom-
left panel). This shows the importance of adopting a gap parameter
that allows the existence of these features in selected filaments to
some degree. The filaments in the right-hand panels are of higher
quality than those on the left since they do not show important
gaps. The section of the filament on the upper-right panel seems
not to follow the highest density path due to projection effects (the
filament follows a path that enters the page, along the z-axis).

Figure 5. Filament quality parameters. Minimum skeleton density (ρ∗min)
as a function of the gap size [max(DSK)/〈DSK〉].

4.1 Filament properties

We apply the method to the numerical simulation described in Sec-
tion 2, using a minimum skeleton characteristic density ρ∗min =
3ρmean and no gap restriction, limiting the node pairs to relative
distances lower than 65 Mpc h−1.

Out of the 3385 node pairs, 1326 are successfully connected via
filaments; we will refer to this first identification as the full sample.
We select an additional subsample of 467 filaments which satisfy
the additional conditions of ρ∗min above the median of the full sam-
ple, and max(DSK)/〈DSK〉 below the median; this sample is termed
the high-quality subsample and contains 33 per cent of the filaments
in the full sample. The separation between backbone members in
the full and high-quality samples are, on average, 4.80 ± 0.03 and
4.19 ± 0.03 times the sum of their virial radii, respectively. As was
mentioned above, all the detected filaments connect nodes separated
by at least the sum of their virial radii. Fig. 5 shows the relation be-
tween gap and density parameters for the detected filaments which
show clear trends of larger gaps at lower densities.

Fig. 6 shows the dependence of the quality parameters on node
separation for the full sample. There are clear correlations, partic-
ularly for filaments shorter than 20 Mpc h−1, which suggests that
shorter node separations produce higher quality filaments.

When studying the properties of the filaments detected using our
automated procedure, it will be useful to compare with a previous
detection. In particular, we will use the results from Colberg et al.
(2005) who detected 228 filament in a DM simulation by eye us-
ing the smoothed DM density distribution. This filament sample
cannot be compared directly with our results, since the selection
criteria are very different. However, both samples are the result of
restricting the search to filaments connecting neighbouring haloes
above 1014 h−1 M�. The main differences between the two sam-
ples are as follows: (i) Colberg et al. use the distribution of DM
particles whereas we use halo positions; (ii) they look for filaments
using the 12 nearest haloes inside cylinders of 7.5 h−1 Mpc of radius
aligned along the node-node axis; in our case we look at all possible
neighbour node pairs given by the VT with no volume constrain;
(iii) Colberg et al. define a true detection based on a visual crite-
rion instead of using quality parameters; (iv) they discard node pair
connections when other clusters lie inside the innermost 5 h−1 Mpc

Figure 6. Gap (left-hand panel) and density (right-hand panel) quality parameters as a function of node separation.
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Figure 7. Fraction of node pairs with detected filaments as function of node
pair separation (left y-axis). The green bar on the first bin shows the fraction
of node pair connections separated by less than the sum of their virial radii.
The total node pair count as a function of node separation for the full sample
is shown as an orange dashed line (its scale is indicated on the right y-axis).
Black bars show the same fraction for the full sample of quasars, red bars
are for the high-quality subsample, and the blue bars are for the Colberg
et al. sample detected by eye.

from the node-node axis, and we discard node pair connections
when another cluster is closer than two times its virial radius to the
filament skeleton; (v) they divide their sample in straight, off-centre
and warped filaments. Therefore, the reader must bear in mind that
comparisons between these two samples are not intended to vali-
date any of the two samples, but to find general filament properties
which are less sensitive to different selection criteria.

The node pair connections are given by the VT method, which
instead of selecting the n nearest neighbours, chooses neighbours
such that the line that connects the pair passes only through the
Voronoi cell around each node. This ensures that any point along
the segment is nearest to one of the two nodes and not to other
haloes. The node pair count of the full sample as function of the
node separation is shown in Fig. 7 as an orange dashed line (the scale
of the counts in 5 h−1 Mpc bins is given by the right y-axis). The
number of pairs grows almost linearly with the separation almost
up to 40 h−1 Mpc, and then it decreases for larger node separations.
In addition, Fig. 7 shows the fraction of node pairs with detected
filaments as a function of node separation (left y-axis scale). The full
sample (solid black bars) is characterized by a decreasing fraction
of connected pairs via filaments as the separation increases; this
fraction is nearly 90 per cent for separations shorter than 5 h−1 Mpc,
and at the largest separations the fraction is reduced to 30 per cent.
In the case of the high-quality subsample (red bars) the abundance
of filaments decreases much faster with fractions below 25 per cent
for nodes separated by more than 20 h−1 Mpc.

Fig. 7 also shows the fractional abundance obtained by Colberg
et al. (2005). Even though their selection procedure is different from
ours, the resulting dependence of this fraction with pair separation
is similar to our results for the high-quality subsample. Our method
does not consider haloes inside the virial radii of nodes, which
means that we do not detect most of the filamentary structure con-
necting two nodes separated by distances shorter than the sum of

their virial radii. The green bar shown for separations shorter than
5 h−1 Mpc in Fig. 7 indicates the fraction of node pairs whose sep-
aration is shorter than the sum of their virial radii for this range of
separations. Most of the pairs represented by the green bar should be
connected by filaments (Pimbblet et al. 2004), since these are over-
lapping bound systems which share matter (i.e. Dietrich et al. 2005;
Tittley & Henriksen 2001); furthermore, this behaviour should ex-
tend up to node separations of a few virial radii (approximately
three times the virial radius), which can be associated to the in-
fall region of haloes (Diaferio & Geller 1997; Pivato, Padilla &
Lambas 2006). Taking into account the mass resolution of our nu-
merical simulation, the mass in such bridges is mostly in the form
of a smooth DM particle distribution, with only a few subhaloes
aligned within the bridge. This makes it more difficult to detect
them with our method even if we also used subhalo positions; as
a consequence we have chosen not to include them in the search.
A possible way to overcome this would be to use the DM particle
distribution, or to run resimulations of these regions with higher res-
olution, enough to resolve several subhaloes per node. The result of
such a study would likely change our fraction of detected filaments
for node separations below 5 h−1 Mpc, which we are underestimat-
ing at present; in the case of Colberg et al. (2005), they find that most
of the halo pairs within this range of separations are connected via
filaments.

In the case of filaments detected in the 2dFGRS, Pimbblet et al.
(2004) find a fractional abundance of filaments similar to our full
sample results; however, their selection criteria are also different
from the one we have applied to the simulation. In particular, they
also identify filaments by eye and use galaxy positions; therefore in
order to make an appropriate comparison it would be necessary to
apply our method to realistic 2dFGRS mock catalogues, or directly
on the 2dFGRS catalogue.

The main properties of the detected filaments are shown in Fig. 8.
The top-left panel shows the distributions of t1 (the median orbit
time for haloes with EP < 0), where it can be seen that the high-
quality filaments are characterized by lower orbit times as expected
since these filaments have higher density contrasts and are more
concentrated than the full sample. The samples shown in the figure
are obtained by setting tF = 2t0 (vertical red dashed line) which
is slightly lower than the median of t1 (indicated by the vertical
blue dashed line). This latter value can be used when detecting
filaments without dynamical data since the orbit time distributions
shown here are relatively narrow (most of the filaments show similar
orbital time-scales).

The top-right panel of the figure shows the distributions of the
parameters r0 and r1 (line types are indicated in the figure key)
described in the previous section. As can be seen, a fixed orbit time
produces a narrow distribution of r0 but a wider distribution of r1

which is obtained using t1. However, the peaks of both distributions
are located at approximately 1.3 Mpc h−1. It is also noticeable a very
slight shift towards smaller radii for the high-quality subsample in
both cases, an effect which is stronger for the r1 parameter, indicat-
ing a dependence of the tF value with the quality of the filaments.
Therefore, better quality filaments seem to be more concentrated
while preserving similar thicknesses with respect to the filaments
in the full sample. In addition, the figure also shows the scale radius
rs computed by Colberg et al. (2005) for their sample of filaments
(blue bars). In their notation rs defines the radius where the den-
sity profiles of straight filaments starts to follow a r−2 relation. Our
definition of r1 indicates a scale radius containing 80 per cent of the
bound haloes with orbit times below the median. Even though both
definitions are conceptually different, they account for the scale
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Figure 8. Distribution functions of properties of the detected filaments. The samples of filaments detected using our automated method are shown in different
line types (explained in the key). The statistics from the Colberg et al. (2005) filament sample are shown as barred histograms.

radius where ≈50–80 per cent of the filament mass is contained. In
general, for a given filament, rs is a more precise computation of the
edge of the filament, but requires the DM particle distribution to be
calculated; r1 is easier to compute since it only requires halo posi-
tions; however, it can underestimate the filament edges depending
on the density profile and density contrast. Therefore, despite the
fact that the comparison is made among two quantities with differ-
ent definitions, as well as different filament samples, it is interesting
to note that the distributions of r1 and rs show similarities; the lat-
ter only shows a slight shift towards larger radii. As can be seen,
the characteristic radius which defines a filament shows a narrow
distribution with preferred values of 1–2 h−1 Mpc, even when using
filaments of different quality or using a sample of filaments selected
by eye. In all cases, however, the lengths of the filaments are similar
and are traced by halo nodes with masses above 1014 h−1 M�.

The bottom-left panel of Fig. 8 shows the distribution of mass
for different filament components (line types are show in the figure
key); all the distributions are shown for the full sample of filaments.

As can be seen, this tracer node mass selection produces skeletons
and filament envelopes less massive than the filament nodes. Both of
these two components show similar distributions, with differences
only at the low-mass end. Note that when using either r0 or r1

the resulting filament mass is practically the same. This shows
that the detection of filaments using a fixed orbit time (when no
dynamical information is available) will provide reliable filament
mass measurements. In the case of the high-quality filaments, we
find that the masses of the skeleton and the surrounding filament
shells are lower than for the complete filament sample, since the
former are shorter in length (as can be seen in the bottom-right
panel of the figure). We find no clear dependence of filament mass
on their node masses.

The bottom-right panel of the figure shows the distributions of
node pair separation and of filament extension (line types are indi-
cated in the figure). The filament extension is obtained by adding
the distances between consecutive filament member positions (i.e.
in a discrete number of segments) along the filament. The node
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1460 R. E. González and N. D. Padilla

Figure 9. Filament thickness (as measured by r1) as a function of filament
length, for the full sample (black) and high-quality subsample (red).

separation is on average smaller than the filament length, which
indicates that most filaments are warped.

The distribution of node pair separation peaks at ≈32 Mpc h−1 for
the full sample, and at ≈15 Mpc h−1 for the high-quality subsample.
The filament lengths also show a peak at shorter values for the
high-quality subsample. When analysing the ratio between these
two quantities in both, the full and high-quality samples, it can be
seen that regardless of quality, longer filaments are more warped
than shorter filaments; i.e. in the full sample, filaments with node
separations below 30 h−1 Mpc are on average 13 per cent larger than
their node separation; this value increases to 40 per cent for larger
node separations. The filaments studied with Shapefinders in the Las
Campanas Redshift Survey (Bharadwaj, Bhavsar & Sheth 2004) are
characterized by lengths of 50–80 h−1 Mpc. In this paper, we have
found shorter high-quality filaments but we have also required node
pair separations <65 h−1 Mpc. It should also be borne in mind that in
most cases these filaments are only segments of considerably longer
structures with more than two nodes (shapefinders are insensitive
to the number of nodes in a filament).

Fig. 9 shows the relation between filament thickness (r1) and
filament length. The error bars correspond to the standard devia-
tion in the measurement of the median of r1, and are computed
using the jackknife method. In the high-quality subsample, we do
not include filaments longer than 80 h−1 Mpc due to low filament
counts (<10). As can be seen, there is a trend of thicker filaments
for longer filament lengths in both samples (full and high quality).
For the high-quality sample, the median value of r1 for filaments
with lengths between 0 and 10 h−1 Mpc is 1.11±0.19 h−1 Mpc, and
for lengths between 60 and 70 h−1 Mpc it is 2.01 ± 0.29 h−1 Mpc (a
significance of more than 3σ for a difference between the longest
and shortest filament lengths). This dependence can be a conse-
quence of any or several of the following effects: (i) all filaments
feed their node haloes and shorter, less massive filaments will ex-
haust their mass first due to the higher infall velocity and node halo
influence over a larger percentage of the filament length (the influ-
ence can extend out to several virial radii, Diaferio & Geller 1997),
(ii) shorter filaments are straighter than longer ones; therefore, in
longer, warped filaments concave zones along the skeleton could

Figure 10. Average longitudinal filament overdensity profile obtained us-
ing the interpolated Voronoi density along the skeleton, as function of the
normalized node pair separation. We only show half of the filament length
since the profiles are symmetrical, on average.

attract haloes from larger distances, an effect that would be absent
in straight-line filaments. The detailed study of this possibility is
beyond the scope of this paper and will be treated in a forthcoming
paper on filament shapes and environments and (iii) a higher prob-
ability to spuriously assign bound haloes at larger distances from
the skeleton for longer filaments, but this is less likely since this
effect is also present when using r0 (which does not depend on a
computation of energy) as a thickness indicator.

We study the variation of the mass density along the filament
skeletons. Fig. 10 shows the average overdensity as a function of
the normalized node pair separation. It should be borne in mind
that as we use the interpolated Voronoi density obtained from the
halo positions and their viral masses, the density only includes a
fraction of the total matter (DM particles beyond the virial radii of
haloes are not included in this estimate). We exclude filaments with
skeletons containing less than six haloes, and the figure only shows
half of the filament length since the profiles are symmetrical (on
average). The figure shows a similar density profile to those found
by Colberg et al. (2005), where the overdensity rises towards node
centres, indicating that on average the infall regions of filaments
extent up to 20 per cent of the filament length. At larger distances
from the nodes, the overdensity remains at nearly constant values of
a few times the average density. The high-quality subsample shows
a similar profile although with higher density contrasts than the full
sample.

We now study the number of filaments connected to individual
nodes, and how this depends on the node properties. Fig. 11 shows
the fraction of filaments connected to 0, 1, 2, . . . filaments for the
full sample (black solid lines), the high-quality subsample (red solid
lines) and the Colberg et al. (2005) results (blue bars). The Poisson
error amplitudes are shown as dashed lines for the full and high-
quality samples. In the full sample, most nodes are connected to
4–6 filaments, indicating that allowing in all the detected filaments
without applying any quality constraints does not provide realistic
results, bearing in mind the observational (Pimbblet 2005) and nu-
merical simulation (Colberg et al. 2008) results on this statistics. A
better agreement with these estimates is obtained when using the
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Figure 11. Fraction of nodes connected to N filaments for the full sample
of filaments (solid black lines), and for the high-quality subsample (solid
red lines). In both cases, Poisson errors are shown by the dashed lines. The
results from Colberg et al. (2005) are indicated as blue bars.

high-quality subsample, in which case most nodes are connected
to two filaments (and the distribution is very similar to that from
the Colberg et al. 2005 filaments). In general the number of fila-
ments per node is strongly dependent on the quality of the filaments
considered; similar quality thresholds are needed in order to make
meaningful comparisons. Given that the number density of filaments
is three times higher for the full sample than for the high-quality
sample (simply due to the total number of objects in each sample)
it can be expected that the distribution of filament connections per
node will also be a factor of three higher for the full sample, that is
�6 compared to �2 connections for the full and high-quality sam-
ples, respectively (as �83 per cent of the nodes of the full sample
of filaments are connected by high-quality filaments).

Fig. 12 shows the average number of filaments per node as a
function of node mass. In all cases this number increases with the
node mass. Errors, shown as dashed lines for the full and high-
quality samples, are obtained using the jackknife method; errors are
not shown for the highest mass bin M > 1015 M� (cyan hatched
region) due to the low number of nodes (10) at this end. Nodes in
the high-quality subsample are connected to an average of 1.87 ±
0.18 filaments for the lowest mass bin, a number that increases
to 2.49 ± 0.28 for M � 1014.9 M�; the significance of this trend
is higher than a 3σ level. This behavior was also observed in the
2dFGRS by Pimbblet et al. (2004), and in a numerical simulation
(Colberg et al. 2005), clearly indicating that more massive haloes
are more likely to have a larger number of connected filaments.
This can be associated to the higher amplitude of clustering of more
massive haloes characterizing random Gaussian fluctuation fields
in a �CDM cosmology (Pimbblet et al. 2004).

There are a number of possible issues which could affect this
statistics that need to be borne in mind: (i) we do not use subhaloes,
and therefore node pairs closer than the sum of their virial radii
could present filaments which we do not detect. Such close pairs
will be more abundant for more massive haloes due to their higher
local overdensities, therefore these undetected filaments could pop-
ulate the high mass end of the Fig. 12. (ii) To avoid repeated filament
segments, we discard filaments which are closer than 2rVIR to a third

Figure 12. Number of filament connections per node as function of node
mass. Different line types correspond to samples selected in this paper
(identified in the figure key); the barred histogram corresponds to the sample
of filaments in Colberg et al. (2005). The hatched area shows the range of
masses containing only 10 node pairs in our numerical simulation.

node, and Colberg et al. (2005) use a fixed value of 5 h−1 Mpc for
a similar proximity condition. In both cases we could be missing
short filaments in dense environments where nodes are more mas-
sive, have larger virial radii and are more strongly clustered; in such
places this proximity constrain could be excessive. In order to test
this issue, we make a subsample of filaments applying the quality
constraints used for the high-quality subsample, but allowing fila-
ments closer to a third node when (i) the node pair separation is
less than 10 h−1 Mpc, (ii) the minimum density along the filament
is greater than 10 times the mean density, (iii) the sum of the virial
radii of the nodes is >2.5 h−1 Mpc and (iv) the filaments are close
to straight-line shapes. These modifications, in conjunction with the
intrinsic properties of VT for the node pair selection, ensures that it
is very unlikely that the short filaments in this new sample are re-
peated segments of other detected filaments. The reason behind this
is that for larger node pair separations, there will be larger distances
from a node to node axis to a third node. Otherwise the constrain
of a common facet between node pair Voronoi cells would not be
fulfilled. This test subsample is shown as green long dashed line in
Fig. 12; as can be noticed the relation of filament connections as a
function of mass becomes stronger.

4.2 Application to observational data

In the case of applying this method to galaxies, we can use lumi-
nosities instead of halo masses and detect filaments following the
path of highest luminosity density. In this case, as the light of a
galaxy is more concentrated than the mass it is safer to assume
that the Voronoi density traces that of the luminosity in both, the
high and low-density regimes. In this case, the filament quality can
be defined using a luminosity density parameter as well as a gap
parameter. However, it would become more difficult to measure a
filament thickness since in general there would be no information on
the mass and, additionally, there seldom is dynamical information
to calculate binding energy conditions in galaxy samples.
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1462 R. E. González and N. D. Padilla

Figure 13. r0 versus r1 for the full sample of filaments (left-hand panel) and for the high-quality subsample (right-hand panel). The vertical and horizontal
dotted lines show the median values of r0 and r1 (respectively), which are quantities obtained using the full binding energy calculation. The dashed lines show
the median values of r2 and r3 (vertical and horizontal lines, respectively), which are the equivalent to r0 and r1 for the case with no dynamical information
(and therefore no energy calculation).

A possible way to apply this method could use the skeleton bright-
ness and a brightness threshold for filament membership where (i)
the distribution of filament thickness and (ii) the relation between
filament thickness and length match the results from a DM simu-
lation where the settings on the quality parameters result in similar
number densities of filaments. These tests, and an application to
observational data from the SDSS are part of a forthcoming paper.

In the case of a sample with estimates of galaxy masses but no
dynamical data, such as in nearby galaxies, it would be possible
to select filament members assuming that galaxies are bound to the
filament, and requiring orbit times lower than tF. In the simulation, as
can be seen in Fig. 8, using a fixed orbit time allows to recover a
distribution of r0 (see Section 3.3 for the definitions of r0, r1, r2 and
r3) which, although slightly narrower, peaks at the same radius as
when using the full energy calculation. Also, the recovery of the
filament mass is only mildly affected by the use of r0 or r1 to select
filament members.

Fig. 13 shows the relation between r0 and r1. As can be seen,
there is a linear relation between these quantities for r1 < median
(r0). Filaments in the high-quality subsample show a very similar
median r0 and a slightly lower median r1 than the full sample, an
effect that probably arises from the fact that filaments in the high-
quality subsample are shorter than in the full sample (see Fig. 8).
In the case of the observational data with masses, but no dynamical
information, the method would only provide measurements of r2

which, when comparing the vertical long dashed and dotted lines
in both panels, can be seen to provide a good approximation to
r0. As the relation between r0 and r1 is reliable for thin filaments,
r2 < 1.2 Mpc h−1, thick filaments will probably suffer from an
underestimation of their real thickness, particularly if their quality
is low. Regarding r3 (horizontal dotted lines), it can be seen that
their median values are very similar to that of r1, indicating that if
one can estimate the collapse time of bound objects to the filament,
the membership obtained using this estimated time will provide a
good membership criterion.

5 C O N C L U S I O N S

We presented an automated method to detect filaments in cosmolog-
ical simulations, using haloes above a fixed mass as tracers of fila-
ment nodes. In addition, we proposed possible directions to improve
this method to allow its use with observational data. As filaments
cannot be treated as virialized structures as in the case of haloes,
and as they are characterized by a wide range of lengths, it is a diffi-
cult task to identify them automatically. As a result these have been
mostly identified by eye. In this paper we detect filaments using an
automated algorithm that provides two filament quality parameters:
(i) a minimum skeleton characteristic density and (ii) a gap param-
eter given by the maximum distance between consecutive skeleton
neighbours divided by the average consecutive skeleton neighbour
distance in individual filaments. A small gap parameter and a high-
density parameter ensure the best quality for a filament. The latter
condition is equivalent to request a high-density contrast.

In our method we define the width of filaments using the median
radius (r1) that contains the haloes gravitationally bound to the
filament in the plane perpendicular to the filament skeleton, and
that are characterized by orbit or collapse times below an upper
threshold. An application of the method to data without dynamical
information can be done since the radius r1 shows a good correlation
with r0 and r2 (r1 is obtained assuming that all the galaxies are bound
to the filament and computing their orbit times based only on their
positions and masses); the members are then selected requiring orbit
times below a fixed time tF. The relation between r1 and r2 is one to
one for thin filaments below r0 ≈ 1.2 Mpc h−1; in thicker filaments
r2 tends to slightly underestimate the actual width of a filament.

We have presented several filament properties which can be stud-
ied in observational catalogues such as the SDSS. In particular,
a subsample comprising the 33 per cent highest quality filaments
in our numerical simulations shows very similar properties to fila-
ments detected by eye in numerical simulations by Colberg et al.
(2005).
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(i) Filament lengths are mostly concentrated below 50 h−1 Mpc,
but can extend to up to 150 h−1 Mpc.

(ii) Shorter filaments are characterized by more straight-line ge-
ometries than longer filaments. Filaments with node separations
below 30 h−1 Mpc are 13 per cent longer than the distance between
their nodes; this increases to 40 per cent for larger node separations.

(iii) The distribution of filament widths is relatively narrow and
shows a clear peak at d = 3 h−1 Mpc. There are indications of an
increase in the filament thickness as the filament length increases.

(iv) Nodes are connected on average to two filaments, this num-
ber increases slightly with the node mass, reaching ≈3 filaments
per node for masses close to 1015 M�.

(v) In the infall region around nodes the average central skeleton
density can be as high as a hundred times the mean density; at
larger distances the density drops to a few times the mean density,
and maintains a roughly constant value along 20–80 per cent of the
filament length.

(vi) There is a strong relation between length, quality and
straightness in the filament shape, where shorter filaments have
better quality and are closer to straight-line geometries.

Similarities of the high-quality sample with the Colberg et al.
(2005) results seem to indicate that the natural by-eye criteria are
strongly related to our quality parameters; a detection by eye selects
high-density contrasts and few gaps. We stress the fact that did not
intend to match the properties of the Colberg et al. (2005) filaments,
instead we simply chose the mean values of minimum density and
gap parameters to define our high-quality sample.

The filament properties we have studied in this paper are focused
on the general characteristics of filaments. There remain many spe-
cific properties of filaments and of their galaxy populations which
can be related to several recent results such as (i) the halo cluster-
ing dependence on the halo mass and on its formation time (Gao,
Springel & White 2005), (ii) the correlations between halo concen-
tration and spin with the local environment (Avila-Reese et al. 2005),
(iii) the fact that galaxy spins are strongly aligned along filaments
(Pimbblet 2005), (iv) the results using semi-analytic models ob-
tained by González & Padilla (2009) which show several variations
of galaxy properties with the local and large-scale environment and
(v) other results showing that galaxy formation should be strongly
dependent on the large-scale environment starting from their early
stages of development, due for example to the delayed reionization
of filaments with respect to clusters as shown by hydro-simulations
of the intracluster medium (Finlator, Özel & Davé 2009). A first step
will be to compare observational galaxy properties in filaments, in
particular their colours, star formation rates and luminosities with
results from semi-analytic models, to characterize some of the pre-
viously mentioned environment effects.

Several studies of galaxy properties in clusters and voids have
opened the possibility to expect important variations in the prop-
erties of haloes or galaxies while embedded in filament-like en-
vironments, since the populations of galaxies and haloes are very
different in voids and clusters. By converging to a standard filament
classification and detection method, the study of galaxy properties
and halo assembly in filaments can be carried out with great detail
to help understand the reasons behind these important population
changes.
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